Lecture 05
 12.5 Lines and Planes in space

Jeremiah Southwick

January 25, 2019

Things to note

MW 2:40-3:40
T 9:30-10:30
R 12:30-1:30
F 8:30-9:30
Also any time after class or by appointment
'Direction in textbook' comment
$\operatorname{proj}_{\overrightarrow{\mathbf{v}}}(\overrightarrow{\mathbf{u}})$

Last Class

Cross Products
$\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}=(\|\overrightarrow{\mathbf{u}}\|\|\overrightarrow{\mathbf{v}}\| \sin (\theta)) \overrightarrow{\mathbf{n}}=\left(u_{2} v_{3}-u_{3} v_{2}\right) \overrightarrow{\mathbf{i}}-\left(u_{1} v_{3}-u_{3} v_{1}\right) \overrightarrow{\mathbf{j}}+\left(u_{1} v_{2}-u_{2} v_{1}\right) \overrightarrow{\mathbf{k}}$

$$
=\left|\begin{array}{ccc}
\overrightarrow{\mathbf{i}} & \overrightarrow{\mathbf{j}} & \overrightarrow{\mathbf{k}} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right| .
$$

Lines
$\overrightarrow{\mathbf{r}}(t)=\overrightarrow{\mathbf{r}}_{0}+t \overrightarrow{\mathbf{v}}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t\left\langle v_{1}, v_{2}, v_{3}\right\rangle=\left\langle x_{0}+t v_{1}, y_{0}+t v_{2}, z_{0}+t v_{3}\right\rangle$.

Line example

Example

Find a vector equation for the line through $(4,-3,5)$ parallel to the line $\overrightarrow{\mathbf{r}}(t)=\langle 2+t, 8-2 t, 3\rangle$.

Line example

Example

Find a vector equation for the line through $(4,-3,5)$ parallel to the line $\overrightarrow{\mathbf{r}}(t)=\langle 2+t, 8-2 t, 3\rangle$.
$\overrightarrow{\mathbf{r}}(t)=\langle 4,-3,5\rangle+t\langle 1,-2,0\rangle=\langle 4+t,-3-2 t, 5\rangle$.

Line example

Example

Find parametric equations for the line L through $(3,5,6)$ perpendicular to both $\overrightarrow{\mathbf{r}}_{1}(t)=\langle 1-t, 2-3 t, 5-t\rangle$ and $\overrightarrow{\mathbf{r}}_{2}(t)=\langle-1-2 t, 2,7+2 t\rangle$.

Line example

Example

Find parametric equations for the line L through $(3,5,6)$ perpendicular to both $\overrightarrow{\mathbf{r}}_{1}(t)=\langle 1-t, 2-3 t, 5-t\rangle$ and $\overrightarrow{\mathbf{r}}_{2}(t)=\langle-1-2 t, 2,7+2 t\rangle$.
The direction vector is the cross product of the direction vectors of $\overrightarrow{\mathbf{r}}_{1}(t)$ and $\overrightarrow{\mathbf{r}}_{2}(t)$.

Line example

Example

Find parametric equations for the line L through $(3,5,6)$ perpendicular to both $\overrightarrow{\mathbf{r}}_{1}(t)=\langle 1-t, 2-3 t, 5-t\rangle$ and $\overrightarrow{\mathbf{r}}_{2}(t)=\langle-1-2 t, 2,7+2 t\rangle$.
The direction vector is the cross product of the direction vectors of $\overrightarrow{\mathbf{r}}_{1}(t)$ and $\overrightarrow{\mathbf{r}}_{2}(t)$.

$$
\overrightarrow{\mathbf{v}}=\left|\begin{array}{ccc}
\overrightarrow{\mathbf{i}} & \overrightarrow{\mathbf{j}} & \overrightarrow{\mathbf{k}} \\
-1 & -3 & -1 \\
-2 & 0 & 2
\end{array}\right|=\overrightarrow{\mathbf{i}}(-6-0)-\overrightarrow{\mathbf{j}}(-2-2)+\overrightarrow{\mathbf{k}}(0-6)=\langle-6,4,-6\rangle
$$

Line example

Example

Find parametric equations for the line L through $(3,5,6)$ perpendicular to both $\overrightarrow{\mathbf{r}}_{1}(t)=\langle 1-t, 2-3 t, 5-t\rangle$ and $\overrightarrow{\mathbf{r}}_{2}(t)=\langle-1-2 t, 2,7+2 t\rangle$.
The direction vector is the cross product of the direction vectors of $\overrightarrow{\mathbf{r}}_{1}(t)$ and $\overrightarrow{\mathbf{r}}_{2}(t)$.

$$
\overrightarrow{\mathbf{v}}=\left|\begin{array}{ccc}
\overrightarrow{\mathbf{i}} & \overrightarrow{\mathbf{j}} & \overrightarrow{\mathbf{k}} \\
-1 & -3 & -1 \\
-2 & 0 & 2
\end{array}\right|=\overrightarrow{\mathbf{i}}(-6-0)-\overrightarrow{\mathbf{j}}(-2-2)+\overrightarrow{\mathbf{k}}(0-6)=\langle-6,4,-6\rangle
$$

Thus the parametric equations for L are $x=3-6 t, y=5+4 t, z=6-6 t$.

Planes

Planes

Whereas we need a point and a direction to define a 3D line, we need a point and a tilt to define a plane. We will describe the tilt of a plane by its normal vector.

Planes

Whereas we need a point and a direction to define a 3D line, we need a point and a tilt to define a plane. We will describe the tilt of a plane by its normal vector.

Definition

A vector is normal to a plane if it is orthogonal (perpendicular) to the plane.

Planes

We will take $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ to be a fixed point in the plane and $P_{1}=(x, y, z)$ to be any other point in the plane.

Planes

We will take $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ to be a fixed point in the plane and $P_{1}=(x, y, z)$ to be any other point in the plane.

Planes

We will take $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ to be a fixed point in the plane and $P_{1}=(x, y, z)$ to be any other point in the plane.

Question
What does it mean for P_{1} to be a point in the plane? What vector is in the plane?

Planes

Answer $\overrightarrow{P_{0} P_{1}}$ is a vector in the plane.

Planes

Answer $\overrightarrow{P_{0} P_{1}}$ is a vector in the plane.

Question
What relationship do $\overrightarrow{\mathbf{n}}$ and $\overrightarrow{P_{0} P_{1}}$ have?

Planes

Answer
$\overrightarrow{\mathbf{n}}$ and $\overrightarrow{P_{0} P_{1}}$ are orthogonal.

Planes

Answer
$\overrightarrow{\mathbf{n}}$ and $\overrightarrow{P_{0} P_{1}}$ are orthogonal.

This means that $\overrightarrow{\mathbf{n}} \cdot \overrightarrow{P_{0} P_{1}}=0$.

Equation of a plane

Definition

Let $\overrightarrow{\mathbf{n}}=\langle A, B, C\rangle$ be a normal vector to a plane containing the point $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$. Then the equation of the plane (where $\left.P_{1}=(x, y, z)\right)$ is

$$
\overrightarrow{\mathbf{n}} \cdot \overrightarrow{P_{0} P_{1}}=0
$$

Equation of a plane

Definition

Let $\overrightarrow{\mathbf{n}}=\langle A, B, C\rangle$ be a normal vector to a plane containing the point $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$. Then the equation of the plane (where $\left.P_{1}=(x, y, z)\right)$ is

$$
\overrightarrow{\mathbf{n}} \cdot \overrightarrow{P_{0} P_{1}}=0
$$

or
$\langle A, B, C\rangle \cdot\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle=0$, the vector equation of a plane or

Equation of a plane

Definition

Let $\overrightarrow{\mathbf{n}}=\langle A, B, C\rangle$ be a normal vector to a plane containing the point $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$. Then the equation of the plane (where $\left.P_{1}=(x, y, z)\right)$ is

$$
\overrightarrow{\mathbf{n}} \cdot \overrightarrow{P_{0} P_{1}}=0
$$

or
$\langle A, B, C\rangle \cdot\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle=0$, the vector equation of a plane
or
$A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0$ the coordinate form of a plane or
$A x+B y+C z=A x_{0}+B y_{0}+C z_{0}$ the coordinate form simplified.

Plane example

Example

Find the equation of the plane through $(-3,0,7)$ with normal vector $\overrightarrow{\mathbf{n}}=5 \overrightarrow{\mathbf{i}}+2 \overrightarrow{\mathbf{j}}-\overrightarrow{\mathbf{k}}$.

Plane example

Example

Find the equation of the plane through $(-3,0,7)$ with normal vector $\overrightarrow{\mathbf{n}}=5 \overrightarrow{\mathbf{i}}+2 \overrightarrow{\mathbf{j}}-\overrightarrow{\mathbf{k}}$.
The vector equation is $\langle 5,2,-1\rangle \cdot\langle x+3, y-0, z-7\rangle=0$. We can simplify this to its coordinate form

$$
5(x+3)+2(y)-(z-7)=0, \text { or } 5 x+2 y-z=-22
$$

Plane example

Question
What is the normal vector of the xy-plane? What is the normal vector of the plane $3 x-6 y=z+8$?

Plane example

Question

What is the normal vector of the xy-plane? What is the normal vector of the plane $3 x-6 y=z+8$?
$\overrightarrow{\mathbf{k}}$ and $\langle 3,-6,-1\rangle$ (or $\langle-3,6,1\rangle$).

Plane example

Example

Find the equation of the plane through $R=(0,0,1), S=(2,0,0)$, and $T=(0,3,0)$.

Plane example

Example

Find the equation of the plane through $R=(0,0,1), S=(2,0,0)$, and $T=(0,3,0)$.
Two vectors in the plane are $\overrightarrow{R S}=\langle 2,0,-1\rangle$ and $\overrightarrow{R T}=\langle 0,3,-1\rangle$.

Plane example

Example

Find the equation of the plane through $R=(0,0,1), S=(2,0,0)$, and $T=(0,3,0)$.
Two vectors in the plane are $\overrightarrow{R S}=\langle 2,0,-1\rangle$ and $\overrightarrow{R T}=\langle 0,3,-1\rangle$.

$$
\overrightarrow{R S} \times \overrightarrow{R T}=\left|\begin{array}{ccc}
\overrightarrow{\mathbf{i}} & \overrightarrow{\mathbf{j}} & \overrightarrow{\mathbf{k}} \\
2 & 0 & -1 \\
0 & 3 & -1
\end{array}\right|=\left|\begin{array}{cc}
0 & -1 \\
3 & -1
\end{array}\right| \overrightarrow{\mathbf{i}}-\left|\begin{array}{cc}
2 & -1 \\
0 & -1
\end{array}\right| \overrightarrow{\mathbf{j}}+\left|\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right| \overrightarrow{\mathbf{k}}=\langle 3,2,6\rangle
$$

Plane example

Example

Find the equation of the plane through $R=(0,0,1), S=(2,0,0)$, and $T=(0,3,0)$.
Two vectors in the plane are $\overrightarrow{R S}=\langle 2,0,-1\rangle$ and $\overrightarrow{R T}=\langle 0,3,-1\rangle$.

$$
\overrightarrow{R S} \times \overrightarrow{R T}=\left|\begin{array}{ccc}
\overrightarrow{\mathbf{i}} & \overrightarrow{\mathbf{j}} & \overrightarrow{\mathbf{k}} \\
2 & 0 & -1 \\
0 & 3 & -1
\end{array}\right|=\left|\begin{array}{cc}
0 & -1 \\
3 & -1
\end{array}\right| \overrightarrow{\mathbf{i}}-\left|\begin{array}{cc}
2 & -1 \\
0 & -1
\end{array}\right| \overrightarrow{\mathbf{j}}+\left|\begin{array}{cc}
2 & 0 \\
0 & 3
\end{array}\right| \overrightarrow{\mathbf{k}}=\langle 3,2,6\rangle .
$$

Thus the equation of the plane is

$$
\langle 3,2,6,\rangle \cdot\langle x-0, y-0, z-1\rangle=0, \text { or } 3 x+2 y+6 z=6
$$

Notice you could use any of the given points.

